Practical Large Scale Classification with Additive Kernels

نویسندگان

  • Hao Yang
  • Jianxin Wu
چکیده

For classification problems with millions of training examples or dimensions, accuracy, training and testing speed and memory usage are the main concerns. Recent advances have allowed linear SVM to tackle problems with moderate time and space cost, but for many tasks in computer vision, additive kernels would have higher accuracies. In this paper, we propose the PmSVM-LUT algorithm that employs Look-Up Tables to boost the training and testing speed and save memory usage of additive kernel SVM classification, in order to meet the needs of large scale problems. The PmSVM-LUT algorithm is based on PmSVM (Wu, 2012), which employed polynomial approximation for the gradient function to speedup the dual coordinate descent method. We also analyze the polynomial approximation numerically to demonstrate its validity. Empirically, our algorithm is faster than PmSVM and feature mapping in many datasets with higher classification accuracies and can save up to 60% memory usage as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CoRE Kernels

The term “CoRE kernel” stands for correlationresemblance kernel. In many real-world applications (e.g., computer vision), the data are often high-dimensional, sparse, and non-binary. We propose two types of (nonlinear) CoRE kernels for non-binary sparse data and demonstrate the effectiveness of the new kernels through a classification experiment. CoRE kernels are simple with no tuning parameter...

متن کامل

Spherical Random Features for Polynomial Kernels

Compact explicit feature maps provide a practical framework to scale kernel methods to large-scale learning, but deriving such maps for many types of kernels remains a challenging open problem. Among the commonly used kernels for nonlinear classification are polynomial kernels, for which low approximation error has thus far necessitated explicit feature maps of large dimensionality, especially ...

متن کامل

Generalized RBF feature maps for Efficient Detection

These kernels combine the benefits of two other important classes of kernels: the homogeneous additive kernels (e.g. the χ2 kernel) and the RBF kernels (e.g. the exponential kernel). However, large scale problems require machine learning techniques of at most linear complexity and these are usually limited to linear kernels. Recently, Maji and Berg [2] and Vedaldi and Zisserman [4] proposed exp...

متن کامل

Large-Scale Gaussian Process Classification with Flexible Adaptive Histogram Kernels

We present how to perform exact large-scale multi-class Gaussian process classification with parameterized histogram intersection kernels. In contrast to previous approaches, we use a full Bayesian model without any sparse approximation techniques, which allows for learning in sub-quadratic and classification in constant time. To handle the additional model flexibility induced by parameterized ...

متن کامل

Probabilistic Classification Vector Machine at large scale

Probabilistic kernel classifiers are effective approaches to solve classification problems but only few of them can be applied to indefinite kernels as typically observed in life science problems and are often limited to rather small scale problems. We provide a novel batch formulation of the Probabilistic Classification Vector Machine for large scale metric and non-metric data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012